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It has been argued by a number of authors that the development of intermittent, localized ion fluctua-
tions in a two-species electron-ion drifting unmagnetized plasma is possible. Compressive ion-acoustic
solitons can develop in such a plasma, but not rarefactive ones. In the case of a strongly magnetized
two-component plasma where intermittent electrostatic ion-acoustic and ion-cyclotron wave packets can
be excited, we show that stationary shock solutions can exist. Their existence is due to the electron non-
linearity rather than the ion nonlinearity as is the case when ion nonlinearities are included, as is often
referred to as Korteweg—de Vries solitons. We also show that there is no stationary solution when the
Zakharov-Kuznetsov boundary conditions are imposed. We analyze the stability of the shock solution
and show that it is possible to trigger a nonlinear instability in the case where a rarefactive pulse is
chosen as an initial condition. A nonlinear criterion for growth is developed.

PACS number(s): 52.35.Mw, 52.35.Fp, 52.35.Qz, 52.35.Ra

I. INTRODUCTION

Over the past decade, there have been a large number
of observations of organized flow in fluids and plasmas
commonly described as turbulent. Historically, turbulent
flow has been characterized by extreme incoherence or
randomness, the most successful theoretical treatments
assuming a quasi-Gaussian probability distribution of the
excited fluctuations. However, it has been observed that
isolated coherent structures develop in some turbulent
plasmas and fluids. Perhaps the most coherent structure
known is the soliton, which maintains its characteristics
even after colliding with other solitons. An example of
intermittent behavior in plasma turbulence is given by
the satellite measurements of the electric fields in the au-
roral zone [1-3], which show localized pulses propaga-
ting parallel to the magnetic field. On the other hand,
numerical simulations have been performed to model
specific experiments, and even replace laboratory experi-
ments in some cases. The results of the simulations have
also revealed the existence of intermittent fluctuations.

A major problem in determining the extent to which
the turbulent state of some plasmas consists of coherent
features is quantifying the idea of “intermittency.” Inter-
mittency has, strictly speaking, no canonical definition.
A signal is called intermittent if it is subject to infrequent
variations of large amplitude. While most observations
of coherence use flow visualization in distinguishing in-
coherent from coherent, a mathematical technique that
consists of constructing the probability distribution
P(8f) of a field variable §f is often used.

Conventional theories of strong turbulence [4], such as
the ‘‘direct-interaction approximation (DIA)” or the
“eddy-damped quasinormal Markovian (EDQNM)” for
example, would assume a quasi-Gaussian distribution,
while the coherent-structure probability distribution
would have non-Gaussian features. In other words, the
probability distribution may have a long tail or non-
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Gaussian features that express the fact that there is a
finite probability for observing a fluctuation with a large
amplitude §f at any phase-space point (x,v). In other
words, the conventional theories of strong turbulence fail
to describe the observed intermittency in turbulent plas-
mas.

Sato and Okuda [5] were apparently the first to observe
these intermittent ion fluctuations in numerically simulat-
ed plasmas; however, they did not provide as much de-
tailed phase-space information as Barnes, Hudson, and
Lotko [6]. In some of these simulations, ion-acoustic
waves were linearly unstable, and in some others they
were stable yet the intermittent structures developed.
This suggests that nonlinear effects can play a major role
in predicting the formation of coherent structures.

Several theoretical interpretations of the numerical
simulation results of intermittent ion fluctuations de-
scribed above have been proposed.

The conventional linear theories, namely, the quasilin-
ear theories [7,8], predict that little free energy would be
available to the fluctuations to grow to the large ampli-
tudes observed in the numerical simulation results and
the satellite observations. Quasilinear “plateauing” of
the electron distribution and trapping arguments grossly
underestimate the saturation amplitude when the spec-
trum consists of densely packed fluctuations. The nature
of the limitation depends on the ratio of the autocorrela-
tion time 7,,=[kA(w/k)]”! to the electron trapping
time 7¢=(kAv,)”! (where k! is the characteristic
length or scale size of the ion fluctuation, Av, the elec-
tron  velocity trapping width, and A(w/k)
=(@0/k)pax— (@ /k)y;, is the width of the phase velocity
spectrum). According to quasilinear theory, which is val-
id when 7, <7f,, growth will cease for ion-acoustic waves
when a quasilinear plateau of the electron distribution
function f,, has formed. In the opposite case, namely,
when 7, > 7(, the Manheimer picture [8] of fluctuation
growth predicts that growth of ion-acoustic waves will
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cease when the growth rate y is equal to the electron
bounce frequency (kAv, ). In either case, the final satura-
tion amplitude e® /T, is very small (less than m,/m;).
The limitations of the quasilinear and the Manheimer
theories reside in their assumption of a homogeneous dis-
tribution of wave energy in space, i.e., the excited fluctua-
tions are supposed to be ‘closely packed,” while it is
clear that the observed fluctuations are intermittently dis-
tributed. In other words, nonlinear phenomena and in-
termittency become important, and therefore the conven-
tional theories mentioned, namely, the quasilinear and
the Manheimer theories, fail to give a consistent picture
of the physical phenomena.

The crucial importance of fluctuation intermittency
should be emphasized at this point since it is a major fac-
tor in determining the amount of free energy available to
the intermittent fluctuations for growth. The electrons,
being the source of free energy in this problem, must not
lose their energy and momentum by becoming trapped
between two successive localized ion fluctuations. The
ion fluctuations must be distant enough such that the
electrons look like free particles carrying energy and
momentum and transmitting it to the isolated ion fluctua-
tions. What is meant by free electrons is that the elec-
trons interacting with a typical fluctuation have not in-
teracted with a spatially distant fluctuation (a threshold
distance is obtained in the one dimensional case in Refs.
[9,10]). The growing fluctuations then compete with each
other for the relatively small amount of momentum when
the electron to ion mass ratio m,/m; <<1. The large-
amplitude fluctuations have an advantage and grow selec-
tively. This state described by Dupree [9-11] and Hamza
[12] as the “survival of the fittest” means that the system
evolves to a state of isolated, large-amplitude fluctua-
tions. In other words, the system evolves towards an in-
termittent state of fluctuations.

The relevance of intermittency is not limited to the
one-dimensional problem already investigated, but rather
expands to more complex problems where coherent struc-
tures have been observed to form and to last for a long
time. A good example is shown by the satellite measure-
ments [1,3] of the electric fields in the auroral zone.
However, the purpose here is to explain the dynamical
process that leads to the formation of these coherent fluc-
tuations.

More specifically, we are interested in the early stages
of the plasma in which the ion-acoustic wave is linearly
unstable. The observations [1], along with the numerical
simulations [13], have revealed wavelike fluctuations ear-
ly on when the fluctuation amplitude is low and the ion
motion is clearly linear. These fluctuations ultimately
grow to very large amplitude, trap ions, and turn into
Bernstein-Greene-Kruskal (BGK) equilibria [14] as
shown in the results of the numerical simulations report-
ed by Barnes, Hudson, and Lotko [6]. This later phase of
the simulation and observation seems to be well under-
stood, see for example Dupree [10] for the one-
dimensional case. Dupree [9,10,16] proposed a theoreti-
cal explanation of these localized self-bound fluctuations.
The proposed one-dimensional model suggests that ran-
dom or turbulent fluctuations of the phase-space density

of velocity space dimension Av for which the potential
energy e® is negative and of the order of m (Av)?/2 tend
to form into self-trapped structures. These structures
when isolated from each other are Berstein-Green-
Kruskal [14] equilibria. For fluctuation speeds of the or-
der of, or less than, the thermal speed v,,, the self-
trapped structures take the form of depressions or
“holes” in the local phase-space density. Generally
speaking, turbulent fluctuations cannot be exact BGK
modes since they are continually interacting or colliding
with each other. The concept of a hole in the phase-
space density such as a BGK mode was discussed by
Berk, Nielson, and Roberts [16]. They investigated such
holes analytically and numerically. They also discussed a
useful gravitational analogy in which the holes may be re-
garded as gravitating masses. Infeld and Rolands [17]
have discussed the stability of BGK equilibria
in both magnetized and unmagnetized, fully three-
dimensional, plasmas. The main question we propose to
address here is the generalization of the one-dimensional
results, concerning the nature of early time isolated low-
amplitude fluctuations, to the three-dimensional case of a
magnetized plasma.

In the case of ion-acoustic type of fluctuation some au-
thors have tried, in the one-dimensional case, to identify
the localized, long-lived fluctuations with nonlinear local-
ized fluctuations such as Korteweg—de Vries (Kd V) soli-
tons.

Some authors [13] have suggested that the observed lo-
calized fluctuations, in the one-dimensional case, are
Korteweg—de Vries solitons. But we find, in the satellite
data as well as in the simulation results, that the speed of
the observed fluctuations is too slow and their potential
(negative potential) of the wrong sign to be the conven-
tional compressive (positive potential) ion acoustic Kd V
soliton. In addition the compressive Kd V soliton being a
positive potential structure would not reflect electrons
which are the source of energy and momentum in this
problem. Moreover, the Kd V soliton propagates with a
velocity that depends on its amplitude, while the results
of the simulations and the satellite measurements indicate
that there is no dependence of the propagation velocity of
the localized fluctuations on their amplitude. In addi-
tion, the localization of the compressive Kd V soliton is
achieved as ion nonlinearities (quadratic in the electro-
static potential) balance wave dispersion. However, the
simulation results [6] show that the localized ion fluctua-
tions develop early on when the ion dynamics is still
linear.

In an attempt to compare the different theoretical
models concerning solitary waves and double layers in
the auroral plasma to the actual observations Malkki
et al. [18] come to the conclusion that the nonlinear ion
hole model (see Tetrault [19] and references therein) is in
best agreement with the observations both in its assump-
tions and predictions. The ion hole model is a one-
dimensional model and needs to be extended to higher di-
mensions. The object of this paper is not to study the ion
hole and its dynamics, but rather to identify the dynamic
process that leads to the formation of such a coherent
structure. Dupress and Hamza [20] have addressed this
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problem in the one-dimensional case, and the present
work addresses the same question in the case of a strong-
ly magnetized plasma.

In this paper we are primarily concerned with extend-
ing the results of the one-dimensional problem treated by
Dupree and Hamza [20] to the more complex case of a
magnetized plasma. The principal result of this paper is
that when the linear growth rate exceeds the combined
dispersion rates in both the parallel and perpendicular
directions to the magnetic field, an electron nonlinearity
(as contrasted to an ion nonlinearity in the conventional
case) will counteract the effects of dispersion early on and
allow the possibility of formation of localized fluctua-
tions.

The one-dimensional results discussed by Dupree and
Hamza [20] can be extended to the case of three-
dimensional ion-acoustic wave packets excited in a
strongly magnetized two-species electron-ion drifting
plasma. Although the problem is more complex, the
physics is similar. The excited three-dimensional ion-
acoustic wave packets propagate along the magnetic-field
lines and disperse in both the parallel and perpendicular
directions relative to the magnetic field. The electrons
being strongly magnetized travel along the field lines like
beads on wires, and make their momentum available to
the wave packets. In the case where there is very little
dispersion in the perpendicular direction, the one-
dimensional results hold, otherwise the rate of momen-
tum input by the reflected and trapped electrons into the
wave packet has to compensate the rate of momentum
loss due to the decay of the maximum amplitude of the
packet which now results from dispersion not only in the
parallel direction but perpendicular direction as well. It
is also important to note that when dispersing in the per-
pendicular direction the fluctuations have access to more
electron momentum, namely, that of the electrons travel-
ing along neighboring field lines.

It is also important to stress that the problem of the de-
velopment of ion-acoustic solitons (compressive) in two-
species magnetized plasmas was first approached by Za-
kharov and Kuznetsov [21] who derived an equation for
the evolution of nonlinear ion-acoustic waves in magnet-
ized plasmas (this equation will be referred to as the ZK
equation from here on). The ZK equation describing
weakly nonlinear ion-acoustic waves was derived using a
fluid model and therefore does not take into account ki-
netic effects such as trapping or reflection of particles.
The properties of the ZK equation have been investigated
analytically as well as numerically by a number of au-
thors, see for example Frycz and Infeld [22] and refer-
ences therein or Murawski and Edwin [23] and references
therein. It has been shown that the ZK equation is not
integrable (i.e., cannot be derived from an integrable
Hamiltonian) and does not admit an N-soliton solution,
i.e., the solution to the ZK equation is a localized solu-
tion but not necessarily a soliton according to Zabusky’s
[24] definition of a soliton. More recently Lotko [13]
have approached the problem of the development of lo-
calized nonlinear ion-acoustic waves in a magnetized
plasma from the numerical point of view. They start
their Vlasov simulations with a negative potential pulse

and observe the formation of coherentlike structures. Fi-
nally Song et al. [25] showed numerically that it is possi-
ble to excite rarefactive localized solutions in a magnet-
ized two-species plasma. As mentioned earlier, BGK
equilibria qualify to explain the final stage of the simula-
tion when the coherent, spatially localized fluctuations
have fully developed and are assumed not to interact with
one another. However, the sole purpose of the present
work, as stressed once more, is to understand the
scenario that eventually leads to the formation of these
BGK equilibria.

In this paper we shall derive the equation governing
the evolution of the excited ion fluctuations in a strongly
magnetized plasma, where the ions are cold and linear.
The equation consists of two parts. The first part is a
linear Zakharov-Kuznetsov [21] equation without the
quadratic nonlinearity due to the ions, and the second
part consists of the nonlinear electron response. We
show that when imposing the same boundary conditions
as in the case of the ZK equation, the evolution equation
does not have stationary solutions. However, when im-
posing different boundary conditions we find that a sta-
tionary shock solution can develop. The effects of the
electron response on the fluctuations are analyzed
thoroughly, and the growth rate for a nonlinear instabili-
ty is derived in the case where the Zakharov-Kuznetsov
boundary conditions are imposed.

Because of the complex nature of the problem, treating
the problem exactly is just impossible. A “wave packet”
has multiple peaks, and therefore makes the problem of
investigating the effects of the nonlinear electron
response on a multipeaked packet very difficult, because
of the presence of not only reflected electrons but trapped
electrons by the different peaks and wells seen by the
electrons. In this paper we have elected to study the
effects of the electrons on a single-peaked ion fluctuation.
The results to be presented are only valid, consequently,
for the case of a single-peaked ion fluctuation.

II. DERIVATION OF THE EVOLUTION EQUATION

A. The model

We now consider a strongly magnetized plasma (low
B<<1), with T,>>T;, where T, and T; represent the
electron and ion temperatures, respectively. The equa-
tions that describe the magnetized system under con-

sideration are the Vlasov and Poisson equations:

of(x,v,1)
———a—t——+V‘ij(x’vvt)
+ |- Evarvxe, [V xv,0=0 (1)
J
and
V2¢:_47T2qudvfj(x,v,t) , (2)
P

where the subscript j in this case represents the plasma
species.
Poisson’s equation can be written more specifically, by
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specifying the different electron populations, namely,
passing, trapped, and reflected electrons. The ions are
considered to be cold and linear. Then Eq. (2) becomes

Vi®=4xe(nf—n;)+4w(nI+nk), 3)
where nf, nl, and nX represent the “passing” or non-

resonant electrons, the “trapped” and “reflected” elec-
tron charge densities, respectively. The charge densities
can be written as

neP'T’R=fdvff'T’R(x,v,t) ,

where the superscripts P, 7, R stands for passing,
trapped, and reflected electrons, respectively (purely non-
linear effects). It is important at this stage to clarify the
validity of the assumption of linear cold ions. As men-
tioned earlier, we are primarily concerned with the
dynamical process that leads to the development of local-
ized structures in a two species magnetized plasma. To
attain this we need to define the trapping times of elec-
trons and ions as well as the dispersion rates in both the
parallel and perpendicular directions.

To estimate the dispersion rates let us consider the case
of a one dimensional pulse with an average group velocity
vg=(aa)/ak)|k:ko=m’(ko). The spreading of the pulse

can be accounted for by noting that a pulse with an initial
spatial width Ax, must have inherent in it a spread of
wave numbers Ak =~1/Ax,. This means that the group
velocity, when evaluated for various k values within the
pulse, has a spread in it of order

2nw'' (k)

Avg =0 (k) = =200 55,

(4)

where o'’ represents the second derivative of the frequen-
cy with respect to the wave number. At time ¢ this im-
plies a spread in space of the order of Av,z. If we com-
bine the uncertainties in position by taking the square
root of the sum of squares, we obtain the width Ax(z) at
time ¢,
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Ax(t)= Ax
0

(Axy)*+ (5

Now that we have a qualitative picture about dispersion,
we should estimate the time, 7, it takes the wave packet
to undergo major changes, such as doubling its width and
reducing its amplitude by a certain factor to be self-
consistently determined:

"
_ 270”7

Ax(TD)— Axo =2AXO . (6)

For the one-dimensional problem of ion-acoustic waves
this leads to
A 1

) 6?2

3

o' (7

A
}”De

where A, Ap,, and o, represent the average wavelength,
the electron Debye length, and the ion plasma frequency,
respectively. This can be generalized to the three-
dimensional case. Let us call 75, and 7p, the dispersion
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times in the parallel and perpendicular directions to the
magnetic field, respectively. These two quantities are
defined for, say, a wave packet with spectral widths
Ak, =~k and Ak, ==k, in the parallel and perpendicular
directions, respectively, by

aza)k

Ax,(1p)=Ak | —7p, =24Ax,(0),
ok{

82a)k
Ax”(TD” )zAk” > Tp| z2Ax“(O) .
akn

In order to evaluate the dispersion times scales we need
the linear dispersion relation, which allows us to obtain
o, the eigenfrequency. To obtain the dielectric function
we need to go back to Poisson’s equation. The Fourier
transform in space and time of Poisson’s equation can be
written as follows (linear ions, and nonlinear electrons):

kZGR(k,a))d>(k,co)=——(OFT(47refRdvfe), 9)

where Opr stands for Fourier transform in space and
time, € the real part of the dielectric function and f, is
given by

fezfeT,R(x,V,t)—fOe(v) . (10)

The real part of the dielectric function, the dispersion re-
lation and other results of the linear analysis of the prob-
lem can be found in Davidson [7]. Expanding the real
part of the dielectric function in equation (9) around the
ion-acoustic branch leads to

deg (k,w)

k? | eg (ko) +(0—wy) o

w=(uk

= — Opr(4me fRdvfe) , (an

where €y (k,,)=0 is the linear dispersion relation deter-
mining wy, given by

o =k c[1—1kfAh — Lk} (AH +p?)] . (12)

This allows us to evaluate the dispersion time scales given
by Eq. (8) for an ion-acoustic wave packet with
Ax(0)=A, and Ax (0)=~A;, where A, and A, are the
average wavelengths in the parallel and perpendicular
directions, respectively:

Ay
, e
e M M o]
Dl_2 2 }»De 1+ P? P
Abe
R (13)
1 A =1
TD‘|~6772 Abe T

where p, is the ion gyrofrequency evaluated at the elec-
tron temperature. We should also point out that for ion-
acoustic waves k| <<k, i.e., A; >>A. A typical value for
the ratio of the average perpendicular wavelength to the
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average parallel wavelength in the auroral magnetosphere
is about 6. This automatically makes the perpendicular
dispersion time scale of an ion-acoustic wave packet
propagating along a strong magnetic field much longer
than the parallel dispersion time scale.

The next step consists of comparing the electron and
ion trapping times to the dispersion times. Since the elec-
trons are strongly magnetized, and therefore assumed to
be one dimensional, their trapping time, 7§r, can be
defined as

172

e | e i M

TH= Tie = e 177 (14)
m

m

e

Therefore it takes longer for the ions to become trapped
along the field lines than electrons. Consequently, at the
early stages of the development of the fluctuations the
electron dynamics is much more important than the ions
dynamics. For example, for a strongly magnetized plas-
ma characterized by w,, /o, >~ 10 (see for example the re-
sults of the numerical simulations reported by Barnes,
Hudson, and Lotho [6]) and for ion-acoustic wave pack-
ets with A~ 10Ap, and A, ~30Ap,, the condition for the
electron nonlinearity to be significant translates into a

(0
2

3
— i0®(k,0)+ ik, Ok, o)+ D-kje, 3 +

We now introduce the “inverse Fourier transformation” Og,

k k2 (A% +p2)=—

2059

condition on the amplitude of the wave packet that is for

ed,,
——T 551074, 15
T (15)

e

T <<Tp|,Tpy, leads to

while the ions would require an amplitude (m;/m,)
larger than that required for the nonlinear electron effects
to become important. This, in other words, justifies our
linear treatment of the ions in the early stages of the de-
velopment of the ion fluctuations since a smaller fluctua-
tion amplitude is required for the electron reflection and
trapping to occur.

Let us now go back to Eq. (11) and investigate the
effects of the nonlinear electrons (right-hand side) on the
evolution of the ion-acoustic wave packet. The expanded
Poisson’s equation becomes

(00— )P(k,w)

1 =
= Opyldme [ dvf,) (16)

deg (k,w)
2R
k dw

ﬂ)=(dk

using the ion-acoustic dispersion relation given by Eq.
(12) and multiplying by —i Eq. (16) leads to

1
) deg (k,w)
dw

(Oy) [4me [ v 7. |, a7
k

m=mk

_ dk do  j(xx—
O 1— __el(k~x wt) , (18)

T 273 27

we then apply it to Eq. (17) to obtain the equation governing the evolution of the electrostatic potential ®(x,?),
c, A3 33 ¢, (AL +p?) 33 _
Id(x,t) +e, od(x,t) + D 0 d>()3;,t) + D7Ps) 3 <I>(x,2t) =(9;T1 1 @FT(47Tef dvF,)
ot oz 2 oz 2 0z3x | , 9ex(k,0) R
k dw oy
(19)

We should note at this point that the electrons are strongly magnetized, and therefore their motion can be approximat-
ed as a one-dimensional motion along the magnetic-field lines (like beads on wires).

The left-hand side of Eq. (20) above represents the linearized version of the Zakharov-Kuznetsov equation [21] (a
three-dimensional generalized Korteweg—de Vries equation). The right-hand side of the same equation represents the
nonlinear response of the electrons, it can be evaluated using k, << k“,

2
d€g

I 3w

~ k222
~kjApecs .

k

Dy

The evolution Eq. (20) then becomes

9 9 Ay | @2 R _
5ty [1+ 5 ‘622+(1+a)V1 o=—2¢

where ng is to be calculated in the next section, and a is

(20)

> (21)
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2
Ps

Ap

a=

It is clear from the derivation of the evolution Equation
(21) that the nonlinearity is due to the electrons rather
than the ions, which is not the case for the Zakharov-
Kuznetsov equation. The latter has a spatially localized
solution, that can be explained by the balancing of disper-
sion by the quadratic ion nonlinearity. In our case we
shall show that Eq. (21) derived above does not have a
stationary solution when the boundary conditions im-
posed on the Zakharov-Kuznetsov equation are also im-
posed on Eq. (21). However, if one imposes different
boundary conditions then it is possible to show that the
equation allows for a stationary double-layer structure to
exist, i.e., a BGK equilibrium is possible as we shall see.

B. Derivation of the nonlinear electron response

We now derive the expression for the resonant electron
charge density. We consider a particle orbit analysis in
order to determine the reflected electron charge density.
We recall that the distribution function satisfying the
Vlasov equation is a function of the particle orbits, i.e.,

e (X, v, )= f o, (Vo(X,V,1))= [0, (00, V10) » 22)
where the particle orbits are defined by
ax _,, A 4 ggxn+vxa. (23)
dt dt m

These equations can be expressed in terms of the energy,

namely,

dE _ aq)(x, t) _ 1 2 2

v E—~—2—m(v|| +vi)—ed, (24)
integrating Eq. (24) for strongly magnetized electrons
[see, for example, Kruskal [26], or Qian, Lotko, and Hud-
son [27] for a direct application (the electrons can be con-
sidered one-dimensional electrons moving along the
magnetic-field lines v, =0] leads to

172

Ze 2 AE| , (@5

— 2
Vo= — = ®(x,1)—
jo =sgn{vyo) |vj m, (x,) m,

where the potential at x=x, and ¢ =t is chosen to be
zero, and AE is given by
t aq)(x(XO’VO,T)yT)

AE=—e dr. (26)
1y 87'

We should note that the time variation of the potential is
assumed to be a slow time variation (the electrons basical-
ly see a quasistationary potential structure, provided the
electron trapping time is much shorter than the disper-
I

nr(z <z,)=20%,F4,(w)®@,,(x,1) |[1—@(x,1)]"*+@(x,t)ln

This can be compressed as follows:

np(z<z,)=B,%,(p),
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sion times scales). Therefore the expression for the
reflected electron charge density (the electrons are as-
sumed to reflect off a localized potential double-layer
structure, a single-peaked potential) can be expressed as
follows for z <z,,, where z,, represents the position of the
minimum potential ®,,(x,,z,,,¢) along the field lines

o +s,,(x)
—ame [ “Cavo, [ dv[foulvo) = fo V)], @)
where
2 172
s, (x,8)= —m—e[<1>m(xi,t)——¢>(x,t)] (28)

and for z > z,,, the reflected electron density is

(x

+ o sp(x) +s,,(x)
47ref0 dv,v, lfﬂM(x)_f—sm(x) ]dv“
X[ foe(vo) = foe (V)]s (29)

where s,, is given by

1/2
2e

sy(x, )= [Dy(x,,1)—D(x,1)]

’

e

and where ®,,(x,,t) represent the finite potential of the
double layer. It should be noted one more time that the
time dependence of the potential is a slow time depen-
dence.

For a Maxwellian electron distribution function drift-
ing in the parallel direction the resonant electron charge
density can be evaluated using steps similar to the ones
used for the one-dimensional case [10]. In the three-
dimensional case the perpendicular velocity integral can
be evaluated straightforwardly, the parallel velocity in-
tegral gives the same expression as the one found in the
one-dimensional case. Let us call Fy,(v,) the electron
distribution after evaluating the perpendicular velocity
integral

Fo,(v))= f0+wdululf0€(v) ) (30)

Therefore the expression for the resonant charge density
becomes
s, (x

—47Tef_

m (%)
5, 0@l Foe (Vo)) = Fo (v))] (31)

expanding the distribution functions around the average
parallel phase velocity u of the wave packet leads to

—d4meFo,(u) [ " dvyvy (32)

where the expression for v, is given by Eq. (25). The ex-
pression (32) is similar to the expression derived for the
main peak of the one-dimensional wave-packet case [12].
It can be evaluated exactly and leads to

— 1/2
1+[1—g(x,t)] H ' (33)

[p(x,2)]'7?

(34)
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and similarly for z >z, one has

neR(Z>Zm)=_Be[gm(¢))_gM((p)] ’ (35)
where
— 172
F (@)=, (x,,0) | [1—@(x,0)]" >+ @(x,1)In 1+E1( ‘P()’;;j;] ‘ ‘ (36)
PLx,t
[
and Korteweg—de Vries equation. The equation obtained in-
d(x,1) cluded the quadratic nonlinearity due to the ions, but
P(x,1 )zm . they did not include any of the electron nonlinearities.
m 1

The expression for F,, can be obtained by replacing ®,,
by ®,, in Eq. (36).

In the next section we shall look for possible stationary
solutions to the evolution Equation (21) for different sets
of boundary conditions.

III. THE STATIONARY DOUBLE-LAYER SOLUTION

In this section we shall show that if one assumes the
same boundary conditions imposed on the Zakharov-
Kuznetsov equation, that allow the formation of a spa-
tially localized potential structure, then the evolution
equation does not have a stationary solution in our case.
However, if one imposes boundary conditions that allow
a double-layer structure, or shock, to form then it is pos-
sible to show analytically that a stationary solution can
be obtained. First we start by looking for a stationary
solution by going into a moving frame defined by

_Z—¢t - X, 37

T ST e O 7
then Eq. (21) becomes

P 3

_+_ 2p — =

o1 8§{V® n,g}=0, (38)

where ®—®(§,§,¢) and n.z(§,€,¢). We now look for a
stationary solution such that ®=®({—At,£),

d9_ .8

Fyie A ac (39)
This therefore leads to rewriting Eq. (38) in the following
form:

92— A — -
3e (VOTAPBin) =0, (40)

thus integrating over { leads to a nonlinear Poisson’s
equation

V2O —AD—n,x =F(£), 41)

where F(&) is an arbitrary function to be determined by
the boundary conditions. Depending on these boundary
conditions Eq. (41) may or may not have a solution.

A. The Zakharov-Kuznetsov case

Zakharov and Kuznetsov were able to find a station-
ary, spatially localized solution to a generalized

The final equation they derived is very similar to Eq. (41),
V2@ —(A—®)P=0 .

They were then able to find a spherically symmetric solu-
tion; a three-dimensional localized solution which ac-
cording to Zabuskki’s definition of a soliton cannot be
qualified as such since the equation is not integrable.

In our case the nonlinearity is due to electrons and
happens to be more complicated than the quadratic non-
linearity that one gets when deriving a KdV-like equa-
tion. In this case we assume the following boundary con-
ditions:

|| > , ®—0, P,—0, Pyp—0, @)
£l >, @0, ®,—0, ®,—0.

For ®—0 one can approximate n,g for {—— o and
therefore obtain

V2o +B,0In|®| =0, 43)

because f3, < F, <0 and that we have derived the non-
linear electron response assuming a negative single-
peaked ion fluctuation, the second term in Eq. (43) is neg-
ative. Consequently V2® >0 and therefore the equation
has no solution converging to zero. In other words, our
assumption of a single-peaked solution, a double-layer
solution, is violated, which leads us to conclude that Eq.
(41) along with the boundary conditions imposed does
not have a stationary localized solution.

We have just argued that when imposing the
Zakharov-Kuznetsov boundary conditions the equation
describing the evolution of the single-peaked potential
fluctuation does not admit a stationary solution.

B. The double-layer case
Let us now impose the following boundary conditions:

>+, P>D,, ®,—0, (I)gg—>0 , )
f——o, -0, d);——»O , <I>§§—->O .

We are basically looking at whether a solution associated
with the pseudopotential V of the type shown in Fig. 1 is
a stationary solution to the evolution equation for the po-
tential. In this case the nonlinear electron response is
given by Egs. (34)-(36). In this case the equations
satisfied by the potential are
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FIG. 1. The pseudopotential associated with a shock solu-
tion.

Vo —Ad—B,F,, (¢,,)=0, (45)
V2O —AP+B, [ F (@) — Far(@ar)1=0, (46)
where 7, is given by Eq. (36) and
_ ®(x,1)
‘pj(x’t) q)j(xlyt) s (47)

where Eq. (45) is satisfied for {<¢&,, and Eq. (46) is
satisfied for £>¢,,.

The first equation can be approximated in the limit
®—0 to lead to

V20 —B,®In | -2 |~0 (48)

m

and since B, <0 it is consistent with the limit when
E—o0.

While the second equation can be approximated in the
limit ®—®,, by

Vo —AD, +B,F, (¢M)=0, (49)
where
P
M_ _M
Prm >, (50)

Now in order for V2® to satisfy the boundary condition
at {=¢,, we need

V2|, =AD,, =A®y —B,Fmlem) (51)
which leads to
Aq>1‘1 —}\'q)m =Be gm (¢£‘nl) . (52)

A trivial solution is ¥ =1. That is, the stationary solu-
tion is a shocklike solution. It is also clear that in this
case electrons are only reflected on one side only [the
nonlinear electron response vanishes on the other side
since electrons are not reflected and expression (35) van-
ishes]. This solution, see Fig. 2, is achieved through the

-20.0 -150 -100 -50 0.0 5.0 100 15.0 20.0

g

FIG. 2. The functional G(g) for a shock potential.

balancing of the dispersion term by the electron non-
linearity (as contrasted to the ion quadratic nonlinearity
in the ZK equation).

IV. STABILITY ANALYSIS

It has been argued by Song et al. [25], from a numeri-
cal point of view, that rarefactive, spatially localized
structures can develop in a two-species magnetized plas-
ma. In order to obtain such a solution one has to treat
the fully nonlinear problem, which is practically impossi-
ble to do analytically without having to introduce some
kind of perturbation analysis. We, however, believe that
it is the electron nonlinearity that needs to be included,
and that dispersion is balanced by the nonlinear response
of the electrons rather than the quadratic nonlinearity
due to the ions as has been the case in many suggested
models in the past. We have shown above that if one im-
poses the right boundary conditions then a shock solution
becomes possible. We will show next, that even in the
case where there are no stationary solutions, one can ex-
cite intermittently, spatially localized fluctuations.

Let us now consider the case where the Zakharov-
Kuznetsov boundary conditions are imposed. We have
shown earlier that in this specific case there is no station-
ary solution. Let us now investigate the effects of the
nonlinear electron response on the development of ion
fluctuations. The effects of nonlinear electrons on the
evolution of one-dimensional ion-acoustic wave packets
in a two-component unmagnetized plasma have already
been considered in Hamza [12] and Dupree and Hamza
[20], and it has been shown that it is possible to balance
the dispersion by the electron nonlinearity to obtain a
growing rarefactive solution. We shall show in this sec-
tion that it is also possible to excite nonlinearly unstable
shock solutions in a magnetized plasma. This in fact will
allow us to understand the formation of strong double
layers in auroral plasmas.

The equation (21) governing the evolution of the ion
fluctuations was derived earlier. The rest of this section
is going to be dedicated to the time-dependent solution to
Eq. (21). The evolution can be written in the following
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form after introducing the normalized variables defined by Eq. (37), then Eq. (21) reduces to Eq. (38) which can be

rewritten for convenience as
ad d 2
—+—{V‘Dd— =0.
at ag { L }

The solution to the linear equation is a linear ion-acoustic wave packet

Opesn= g [Tk [k ok

(27 ©

where

®)=[""ac [T "dg 5,600

iheym+ik &

(ik”§+ikl§+ik"kzt)
b

One of the main assumptions is to assume a negative pulse for the initial condition. For an initial Gaussian pulse the in-
tegral over k, can be performed analytically while the integral over k is done numerically,

1 +eo dk, ki &
P, ( » ,t)= — ex —_——
Hos =g s I-. (116627 P |72 1k
Xcos |k, C+kit +larctan(4k t )——4—k—"£l—§;2—
I (Y T ek |

where ¢ and ¢, are defined as follows for an initial condi-
tion with parallel and perpendicular widths A, and A, re-
spectively:

_t
T3 TR
)Lll }"H}\'l

L

The results are shown in Figs. (3) and (4) for two extreme
cases. It is clear that the signature of the linear solution
is an Airy function in the parallel direction. We should
point out that the electrons are moving along the
magnetic-field lines like beads on wires. When such wave
packets are excited, the electrons start exchanging energy

0.0
y/ )‘_L Tro -8.0

FIG. 3. The linear solution for a narrow initial condition
(Gaussian), with parallel and perpendicular widths A;/Ap, =10
and A, /Ap =S5, respectively, in units of Debye lengths, at time
T=@w,;t =300 in units of ion plasma frequency.

[

and momentum with the packets, and it is important to
stress the fact that as the wave packets disperse in the
perpendicular direction more electrons get reflected by
the relative minima of the packets, and therefore provide
a source of free energy and momentum to the packets.
This wave-particle interaction can allow, as we shall see
very soon, a nonlinear instability to set up. However, the
main object of this section is to study the evolution of a
single-peaked initial condition and the stability of the sta-
tionary solutions when they exist. In order to do so, let
us multiply Eq. (53) and integrate over §, with the
Zakharov-Kuznetsov boundary conditions imposed. This
leads to

0.0 N
Y/ X 1L *0 —-8.0

FIG. 4. The linear solution for a broad initial condition
(Gaussian), with parallel and perpendicular widths A;/Ap =10
and A, /Ap =30, respectively, in units of Debye lengths, at two
time 7=w,;t = 300 in units of ion plasma frequency.
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&l teg 2 oP N g
-— —= o — . —npg=
5 f = [ TdeS (VOB e (53) Boggmer =55
This last equation can even be reduced by expressing ex-  then the second integral on the right-hand side becomes

plicitly the Laplacian to obtain

0 2 © 2
B [regp @ [y 00 3O

3F Ag2
2 é—— [ racS2 G (54) ” =
ar A |agr TR —N,g(E—+ o) +Ng(E——o).
. . . o . (55)
By assuming a negative potential as an initial condition
one can write an explicit form for the electron nonlineari-  Let us now integrate over £. The expression above be-
ty, and then show that comes
J
d [t +w + o te a<1> R +w
D ragf ag S = [Trag " 465 e~ S dEN (Gt o) =Nl — 0] (56)

It is clear that the first term on the right-hand side, due basically to dispersion in the perpendicular direction can be
simplified by integrating by parts. Indeed, the dispersion terms spread the momentum in space but they are not sources
of momentum and energy. Therefore, the only source of momentum is due to the nonlinear electron response. Equa-
tion (56) can now be written as follows:

a + o + +oo
AR dg———f Neg (§—+0) = Nog (§—— )]
e 30 30 ro |57
+3fwdgl 3 9 e L:_w. (57)

This allows us to state that if the right-hand side of Eq. (57) is definite positive, then the system is nonlinearly unstable.
The instability is purely due to the nonlinear electron response balancing the dispersion effects.

The next step is to evaluate N,z and show that the system is nonlinearly unstable. The expression was given earlier
for an initial negative potential peak,

R =Besgn($,, — 50, (6,1) |(1—@)?+(1—¢) >+ ¢’In 1+(1]_/;)1/2 , (58)
when substituted into the expression (57) it leads to

B +wd§f+wd§___f+w l 330 || 20 r +°°+4B [l (59)

ot o OF agag _

It is clear that the right-hand side of Eq. (59) can be definitely positive and therefore the potential can grow in time due
to the fact that the source of free energy provided by the nonlinear electrons can balance the dispersion effects. If we
assume that when £— 1+ oo the potential and its £ derivative vanish, then it becomes clear that the first term on the
right-hand side of Eq. (59) vanishes and therefore a nonlinear instability is always present. It is also important to note
that the one-dimensional problem is nonlinearly unstable (no £ dependence).

Before treating the other case, let us investigate the case of a rarefactive pulse localized in the region bounded by ¢,
&2 £1(8), and £,(§) or vice versa, and with parallel and perpendicular widths A, and A, respectively. The peak of the
pulse being localized at ({=0, £=0). The potential is assumed to vanish on this contour. The momentum balance
equation in this case can be written in the following form:

[A(q) 5
f, £ P2 & 3P AP 3’ : 1 & 9P 2 )
—==_d D +—=]. d - +4 dEd;, . (60)
T T A ;l S | e et St | |3 ] [yt e
[
In order to have marginal stability the right-hand side of A2
Eq. (60) has to vanish. This leads to a marginal stability g =1, (61)

condition (after normalizing the variables { and & to §/A, I+ _}_‘l J
and £/A,) AL
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where 7, <, Fj,
growth rate, and

represents the linear ion-acoustic

l §2d§ a;() £,(&)
- 4 J¢ | a& 68
[ ag e,
‘ £/0) (62)
1oy 00 00
S 4 J¢ a5 & |&©o
2 2
J, 462

It is clear that the marginal stability condition for the
one-dimensional case can be recovered by taking the limit
when AL— o to obtain yLkﬁl‘I: 1.

The shock solution case

Let us now analyze Eq. (21) in more detail, in the case
where a stationary shock solution can develop. The
equation can be written as

o P 2 o
%ffw de [T = [T TAE DN (@p)— [
1 pte P 9P
A

o242 9 yep=202 (63)

where ®=®(§,£,t) and R =B,n,,. The second term on
the left-hand side represents the dispersion, while the
right-hand side represents the electron nonlinearity.

It is clear that in order to obtain a shock solution, the
electron nonlinearity has to balance the dispersion. The
momentum balance equation shows that if one imposes
boundary conditions such as ®—0 as 1 oo, the system
is nonlinearly unstable as shown and argued in the previ-
ous section. In the remaining of this paper we shall in-
vestigate the stability of the shock solution by perturbing
around it.

We have shown earlier that indeed one can find a sta-
tionary solution to Eq. (63) by imposing proper boundary
conditions. Next we will investigate thoroughly the sta-
bility problem by expanding around the stationary solu-
tion. But before getting into the detailed analysis, let us
consider one moment equation, the momentum conserva-
tion equation obtained by multiplying Eq. (63) by ® and
integrating over space to obtain

dg[NeR(§—>+°°)+NeR(§—>_°°)]

R

acoE T

E=+
} , (64

E=—o0

the boundary conditions being specified by Eq. (44). It is clear that this equation is different from Eq. (57) because of
the different boundary conditions imposed. We should, however, note that N, (®;,)=0 and therefore the momentum

balance equation can be written as

9 pr+w + o0 q>2_l + oo
) dgfwd§~2——2fwd§[

©

9P 30 |
95 9§

It is clear in this case as well that the system is unstable
only if the electron nonlinearity overwhelms the disper-
sion effects. Again, if the dispersive effects are neglected,
one automatically triggers a nonlinear plasma instability.
This can be confirmed by expanding around the station-
ary shock solution as follows:

B, E,D) =D E+E—1)+eD (L 1) . (66)

The linearization of the evolution equation leads to the
following equations:

0o L D V20,— R ($,)]=0 (67)
at A 0 0
and to first order in € we obtain
od, 9 D, | 39,
+—V2P, — _— =
Y agv o, —B,sgn($)F o, ] ¢
D,
—B.sgn(§)G D $,=0. (68)

The zeroth-order solution was derived in Sec. III. The
functionals F and G are known, and are given by

%P
dE dE

é‘:foo
} +28, [ TTdEdL (&0 . (65)
== e
[
1+v1—
Fe—' ‘/_ %o (69)
\/1“<P0 \/‘Po
and
G:l% (1—g) ¥+ 1 +_1_ )
2 3 0 (1—@) > +1—g@, ®o
(70)

When neglecting the dispersion term in Eq. (68) we ob-
tain an equation that can be solved using the method of
characteristics. The equation is basically one dimension-
al, and enables us to explicitly look at the solution to the
problem in the absence of dispersion,

D
idg=—/3€sgn(§)F q)—o an
and
do, @,
—dt—=Besgn(§)G s D, , (72)
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where the d /dt is used to denote the directional deriva-
tive along the characteristics C(§,t)=const, given by

@

¢Wl

%—f—ﬁesgn(g)F a—C=O

ac (73)

Equation (72) can be integrated to give
®,(C,1)=®,(C(£,0),0)
X exp(B, [ d7sgn[£(N]G (@o(g(n), 7)), (74)

where again §(#) satisfies Eq. (71). The initial conditions
are §(0)=¢, and n(t)=1.

It is clear from Fig. (4) that for a shock solution ®, the
functional G(¢,) is always positive, and therefore for
£(2) > 0 the perturbation ®,; grows in time, while it decays
in time for {(#)<0. The dispersion effects are crucial,
and are indeed stabilizing, since dispersion basically
spreads momentum in space.

On the other hand, we should note that by neglecting
the dispersion effects one cannot obtain a stationary solu-
tion, since we expect the stationary solution to develop
from background noise. Indeed, if the system is unstable,
any fluctuation will be subject to both the electron non-
linearity and the dispersive effects, if one of these is
neglected then the fluctuation keeps on growing or
disperses.

V. SUMMARY AND CONCLUSION

The problem of ion-acoustic turbulence in both labora-
tory and space plasma physics has been debated for a
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long time. The leading theoretical models suggesting that
turbulent fluctuations of soliton type can explain the
different observations. However, it is clear that rarefac-
tive ion-acoustic solitons cannot develop in a one-
dimensional unmagnetized two-species plasma, and only
compressive ones can form, and consequently one cannot
explain the one-dimensional results of several numerical
solutions. In a magnetized plasma, we have shown, when
neglecting the ion quadratic nonlinearity, including the
source of free energy in the electron, and imposing prop-
er boundary conditions, that a stationary shock solution
can form.

We have shown that if localized rarefactive fluctua-
tions should develop then they are unstable and can grow
to large amplitudes. We have analyzed the situation
when ion-acoustic wave packets are excited. We have
been able to show that the nonlinear electron response al-
lows these linear wave packets to remain localized, and at
the same time grow nonlinearly, and a criteria for non-
linear growth was derived. These results are a generaliza-
tion of the one-dimensional case studied by Hamza (1989)
and Dupree and Hamza (1990).
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